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T. Mančala and V. Mayb

Institut für Physik, Humboldt-Universität zu Berlin, Hausvogteiplatz 5-7, 10117 Berlin, Germany

Received 30 August 2000 and Received in final form 25 October 2000

Abstract. The optimal control (OC) scheme for molecular dynamics is applied to the study of ultrafast
bridge mediated electron transfer (ET). Utilizing the methods of dissipative quantum dynamics in com-
bination with the OC approach the guided charge motion in a donor-bridge-acceptor system including
a single active vibrational coordinate is studied. The control field drives the optical transition from the
electronic ground-state of the ET system into the donor-level and can be used to prepare special electronic
and vibrational states. In particular, it is demonstrated that charge localization becomes possible at the
acceptor or bridge molecule as well as in the electronic ground-state of the ET system.

PACS. 34.70.+e Charge transfer – 82.50.Nd Control of photochemical reactions

1 Introduction

Encouraging experimental attempts let become the laser-
pulse control of molecular dynamics a subject of physico-
chemical research far beyond any pure theoretical specula-
tions [1,2] (for a recent overview on the whole field see also
the contributions in [3]). Nevertheless, theoretical studies
and numerical simulations introduced various ideas and
concepts which became indispensable for the development
of the whole field. At the heart of such simulations lies the
optimal control (OC) theory [4,5]. Defining a particular
state of the system at a particular time (target state), OC
theory enables one to compute the laser-pulse one needs
to achieve this state. The formulation of the OC theory is
well documented in a number of reviews and original pa-
pers (an actual overview can be found in [3]). Originally it
has been formulated for systems which dynamics are gov-
erned by the time-dependent Schrödinger equation [4,5].
A formulation for mixed states could be achieved already
in [6]. And recently, the efficient iteration scheme of [7,8]
has been extended to the reduced state dynamics of an
open quantum system [9].

The contribution of the present paper is devoted to
the application of OC theory to laser pulse control of ul-
trafast photoinduced ET processes. Such a control task as
well as the control of excitation energy motion (Frenkel-
exciton transfer) found less interest. Instead, most work
has been concentrated on controlling chemical reactions
with the main aim to destroy a certain chemical bound. In
the field of ET only those reactions have been investigated
which are not of the photoinduced type but are character-
ized by the action of a high-frequency electric field (which
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modulates the energetic distance between the donor and
the acceptor level) [10–14]. In the present paper, however,
we will demonstrate the control of ET reactions by fields
in the optical region. An external field-pulse is used to
excite the donor level and to initiate ET which proceeds
in the sub-picosecond time-domain. We believe that OC
theory of such ET processes is of great interest, first be-
cause less emphasis has been put on the OC of particle (or
quasi-particle) motion in molecular systems, and second
because of the increasing number of experiments dealing
with such problems (for example [15]).

External field control of ET reactions represents an
example for molecular dynamics control where the whole
motion of the molecular degrees of freedom (DOF) pro-
ceeds within bound states. If one denotes the eigenstates
of those vibrational coordinates participating in the ET
reaction by |ψα〉 (adiabatic states), the control problem
discussed in the following corresponds (i) to the opti-
cal preparation of a wavepacket formed by these states,
and (ii) involves the motion of this wavepacket guided by
the external field into a final superposition state |Ψf〉 =∑
α cα|ψα〉.
This seems to be a simple problem compared to cases

with non-bonding states where one has to carry out the
calculation on a grid in the coordinate representation in-
stead in the state (energy) representation. But to cover
the aspects of spatial charge redistribution within the ET
reaction one usually discusses ET in terms of more local-
ized diabatic states. This results in the fact that spatial
charge motion corresponds to the dynamics of a superpo-
sition states in the adiabatic representation. For example,
introducing the vibrational ground state of the acceptor
|ψA0〉 as a possible target state means in the adiabatic
representation to try to occupy with high probability a
superposition state like the above introduced state |Ψf〉.
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Fig. 1. PES referring to
the discussed ET system.
The position of the PES are
somewhat oriented at the
system of a dye molecule
attached to a semiconduc-
tor surface which shows
ET on a time scale below
100 fs [25].

Usually ET reactions are characterized by vibrational
energy dissipation. A common approach to incorporate
this process is to account for the coupling to a reservoir
of passive vibrational coordinates (see e.g. [16–18] and
the various contributions in [19]). In this manner one in-
cludes frictional effects acting on the reaction coordinate
and the ET has to be described in the framework of dis-
sipative quantum dynamics (density matrix theory [18,
20–23]). The OC for dissipative dynamics has been stud-
ied recently in [9]. The new aspect in the present paper
is the foundation of the OC approach on a microscopi-
cally justified expression for the (active) system-reservoir
(bath) coupling. This ensures that in the density matrix
equation those terms being responsible for dissipation are
microscopically justified, too.

The paper is organized as follows. In the next section
the ET model used for the concrete calculations is shortly
introduced. Before discussion the results in Section 4 we
establish the OC scheme in Section 3. Any more involved
calculation can be found in one of the three appendices.
The paper ends with some short conclusions.

2 The model for ultrafast electron transfer
reactions

To study bridge mediated ET the simple donor-bridge-
acceptor (DBA) system (where the bridge is represented
by a single electronic level) found a widespread applica-
tion (see [19]). Although it only represents a generalization
of the standard curve-crossing problem by an additional
level it allows to describe different new aspects of ET. For
the present calculations we will introduce such a three-
level (three PES) model, too. It is shown in Figure 1 via
the related PES drawn versus a single active coordinate.
The actual parameter values can be found in Table 1 (for
a detailed explanation see below). Its choice has been in-
spired by our simulations on ultrafast ET proceeding from
a dye molecule attached to a semiconductor surface into
the conduction band of the semiconductor [25].

The respective Hamiltonian HS (describing the active
system) includes a molecular part Hmol and the coupling

Table 1. Parameters of the single-mode version of the ET
model introduced in Section 2. The transfer integrals among
the three PES responsible for the ET have been taken as VDB =
VBA = 0.03 eV, and VDA = 0. The transition dipole moment
dDg has been set equal to 12 D.

m U
(0)
m − U (0)

g ~ωvib Q(m)

g 0 0.1 eV − 4

D 2 eV 0.1 eV − 1.172

B 2 eV 0.1 eV 1.414

A 2 eV 0.1 eV 4

to the external field HF(t). We write

HS = Hmol +HF(t), (1)

where the molecular part covers the ground-state contri-
bution Hg|ϕg〉〈ϕg| and the ET part HDBA

Hmol = Hg|ϕg〉〈ϕg|+HDBA. (2)

|ϕg〉 denotes the electronic state vector referring to the
ground state of the ET complex, and Hg is the respec-
tive vibrational Hamiltonian. Since we are interested in
studying charge localization via external laser pulses the
diabatic representation with states localized at the build-
ing blocks of the ET system seems to be most appropriate
(compare, e.g. [18,26,27]). Accordingly, the ET Hamilto-
nian reads

HDBA =
∑
m,n

(
δm,nHm + (1− δm,n)Vmn

)
|ϕm〉〈ϕn|. (3)

The diabatic states correspond to the wavefunction of the
transferred electron at the donor, acceptor and bridge part
and are denoted by |ϕm〉 (m = D,B,A). In the case of
the donor the respective level corresponds to an excited
level whereas in the case of the bridge molecule as well
as the acceptor the diabatic states refer to the presence
of an excess electron. All vibrational Hamiltonian Hm,
(note m = g,D,B,A) are written here with dimensionless
vibrational coordinates Q = {Qj}

Hm = Tvib + U (0)
m +

∑
j

~ωj
4

(
Qj −Q(m)

j

)2

. (4)

The minima of the respective PES are denoted by U
(0)
m ,

and the single Qj can be expressed by the respective
harmonic oscillator operators Cj and C+

j according to
Qj = Cj+C+

j . Their introduction is based on the assump-
tion of equally shaped PES independent on the actual elec-
tronic state. The Q(m)

j refer to the mutual displacement
of the PES with respect to the vibrational coordinates.
The respective vibrational eigenfunctions of the Hm are
denoted as |χmM 〉 with the set M of vibrational quan-
tum numbers. For simplicity, the transfer integrals VDB

and VBA coupling the donor with the bridge level, and
the bridge level with the acceptor, respectively, have been
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taken independently on the vibrational coordinates (note
the assumption VDA = 0). Finally, we give the coupling
Hamiltonian to the radiation field

HF(t) = −E(t)µ̂, (5)

with

µ̂ = dDg|ϕD〉〈ϕg|+ h.c., (6)

and with transition dipole moment dDg being independent
on the Qj (Condon-approximation). The field is assumed
to be linearly polarized but remains free otherwise

The model introduced so far is completed by a cou-
pling of the set Q of active coordinates to remaining pas-
sive vibrational coordinates [18,19]. These coordinates are
denoted by Z = {Zξ} and act as a dissipative reservoir.
The may belong to the ET complex or to a surrounding
solvent. The respective coupling Hamiltonian is used in
the form

HS−R =
∑
m

Wm(Q,Z)|ϕm〉〈ϕm| (7)

where the use of only diagonal contributions with respect
to the electronic states represents an additional assump-
tion. If the Wm(Q,Z) factorizes into a system and a reser-
voir part, HS−R can be identified with the multiple factor-
ized ansatz of dissipative quantum dynamics (see, e.g. [18])

HS−R =
∑
u

KuΦu, (8)

with Ku ≡ Km(Q)|ϕm〉〈ϕm|, exclusively defined in the
state space of active system states and with Φu ≡ Φm(Z),
defined in the reservoir state space. Such an expression is
flexible enough to cover many types of couplings.

3 Optimal control scheme for dissipative
molecular dynamics

Having in mind some generalizations of the computations
documented in the present paper on external field control
of ET reactions we start with the most general type of OC
theory, e.g. the formulation for open quantum systems [9].
A reduction to mixed or pure state dynamics of closed sys-
tem is straightforward. In order to apply the density ma-
trix theory of dissipative quantum dynamics [18,20–23] we
start with the total Hamiltonian H = HS(t)+HS−R+HR.
Here, HR governs the dynamics of the environment (ther-
mal reservoir). The active system Hamiltonian HS(t) has
been already introduced in equation (1) and its coupling
to the environment, HS−R in equation (8). According to
the introduction of an active system (of a selected number
of electronic and vibrational DOF) one has to define the
reduced density operator

ρ̂(t) = trR{Ŵ (t)}. (9)

This quantity is obtained from the complete statistical op-
erator Ŵ (t) via a trace operation restricted to the reser-
voir states. The time evolution of the reduced density
operator is governed by a respective time evolution su-
peroperator U(t, t0) which acts according to

ρ̂(t) = U(t, t0; E)ρ̂(t0). (10)

The introduction of U corresponds to the existence of a
particular equation of motion for ρ̂ which is taken here
in the following form (Markovian Quantum Master Equa-
tion, see e.g. [18])

∂

∂t
ρ̂(t) = −iLmolρ̂(t)− iLF(t)ρ̂(t)−Dρ̂(t). (11)

The Lmol and LF are the Liouville superoperators cor-
responding to the commutator with Hmol, equation (2)
and HF, equation (5), respectively. Since the electric field-
strength has been incorporated in the density operator
equation the E-dependence of the time evolution super-
operator, equation (10) has been separately indicated. All
effects following from the coupling to the environment are
comprised in the action of the superoperator D. The con-
crete form of D follows from the system reservoir coupling
expressions, equations (7, 8) (for details see Appendix B).

Finally, we remind on a possible indirect field depen-
dence of equation (11) induced via a field dependence of
the dissipative superoperator D. This effect has been dis-
cussed in reference [28] where its relation to continuous-
wave driven open quantum systems (see, e.g. [29]) could
be underlined. In such a continuous-wave driven situa-
tion an external field may change the position and mu-
tual distance of the molecular levels. Since the position
of the related transition frequencies within the spectral
density (describing the coupling to the reservoir) decides
whether or not the dissipation works effectively a change
of the transition frequencies may alternate the strength
of dissipation. For the field-influence of sub-picosecond
pulses, however, one has to change from this frequency
domain description to a description in the time-domain.
This has been done in [28], where the respective compu-
tations showed that a sufficient intense and short pulse
(about 10 to 15 fs long) may induce certain modulations
of the molecular relaxation rates. Since the numerical cal-
culations given below are aimed to the field control of
closed-system dynamics we postpone the inclusion of the
indirect field-influence to a forthcoming paper.

Laser pulse control of molecular dynamics is usually
formulated as the task to realize at a certain final time tf
the expectation value

O(tf) = trS{Ôρ̂(tf)} (12)

of the observable described by the (Hermitian) quantum
mechanical operator Ô. To get O(tf) one applies a field
pulse E(t) (the optimal pulse) which should drive the
system in the required manner. According to [6] the op-
timal pulse is defined as the extremum of the following
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functional

J(tf ; E) = O(tf ; E)− 1
2

tf∫
t0

dt λ(t)E2(t), (13)

where the second term on the right-hand side guarantees
an upper limitation of the field intensity. (The penalty
factor λ(t) has been taken time-dependent to avoid a sud-
den switch on and switch off of the control field [24].) A
slightly different version of the functional has been sug-
gested by Rabitz [7–9], who used a somewhat larger ex-
pression which ensures the use of the correct dynamic
equations. In the present approach, however, the concrete
dynamic equation to be used is already fixed by the de-
mand how to determine O(tf), equation (12).

In order to get a nonlinear functional equation de-
termining the optimal field pulse one sets the functional
derivative of J with respect to E equal to zero. One
obtains (details of the derivation are given in the Ap-
pendix A)

E(t) =
1
λ(t)

δO(tf )
δE(t)

=
K(tf , t; E)

λ(t)
· (14)

This expression has to be understood as a self-consistency
relation for the optimal field. The actual value of the field
at time t becomes proportional to the change of O(tf ) with
respect to the field-strength at this time. The quantity

K(tf , t; E) =
i
~

trS{ÔU(tf , t; E)MU(t, t0; E)ρ̂(t0)} (15)

is known as the (vectorial) control kernel which depends
on E in a highly nonlinear manner. The kernel is obtained
by propagating in a first step the reduced density operator
(under the presence of the external field) from the initial
time t0 up to an intermediate time t ≤ tf . Then, the com-
mutator with respect to the dipole operator is calculated
(abbreviated here by the action of the dipole superoper-
ator M... = (µ̂, ...)−). Afterwards, the result has to be
propagated from t to the final time tf where the opera-
tor Ô acts. According to equation (14) the control kernel
has to be calculated in such a manner that it coincides
(despite the prefactor 1/λ) with the field. If this became
possible the optimal field has been determined.

Obviously, one needs a certain iteration procedure to
solve equation (14). A direct iteration of equation (14)
has been proposed in [6]. Its inconvenience and some-
times inability to achieve convergency has been discussed
in literature [7–9]. To avoid these problems we will follow
the suggestion of [9]. For this reason the control kernel is
rewritten as

K(tf , t; E) =
i
~

trS{σ̂(t; E)Mρ̂(t; E)} , (16)

where the two time-dependent operators σ̂(t; E) and
ρ̂(t; E) are propagated separately up to the intermediate
time t. The operator at the left part of the trace is given as

σ̂(t; E) = Ũ(tf , t; E) Ô. (17)

It comprises a reverse propagation from the final time tf
up to the intermediate time starting with Ô at t = tf . The
time-evolution superoperator Ũ is discussed in some more
detail in Appendix B.

This possible separate propagation of σ̂ and ρ̂ is used
to establish an efficient iteration procedure [9]. Therefore,
the explicit appearance of the control field E via the term
proportional to LF(t) is removed in the equations for ρ̂ and
σ̂ in using equation (14) and expression (16) for the con-
trol kernel. As a result a coupled set of nonlinear equations
of motion is obtained. Since the numerics of the present
paper are aimed to study closed system dynamics we only
quote these equations in Appendix C and jump to nondis-
sipative dynamics.

3.1 Restriction to mixed and pure-state dynamics

The control scheme explained in the foregoing section pro-
vides the introduction of a reduced density operator and
is based on dynamic equations including dissipation. Ne-
glecting any coupling to the environment the scheme can
be easily specified to closed system dynamics character-
ized by pure or mixed states. Therefore, the reduced den-
sity operator will be identified with the complete statis-
tical operator Ŵ (t). In such a case the time evolution
superoperator introduced in equation (10) is reduced to

Ŵ (t) = U(t, t0; E)Ŵ (t0) ≡ U(t, t0; E)Ŵ (t0)U+(t, t0; E)
(18)

with the ordinary time-evolution operator U(t, t0; E) de-
fined via HS, equation (1). For the initial value of the
statistical operator we have in mind the canonical equilib-
rium form written here via an expansion with respect to
the eigenstates |ψα〉 of Hmol (f is the thermal distribution
versus the eigenenergies Eα)

Ŵ (t0) = Ŵeq =
∑
α

f(Eα)|ψα〉〈ψα| . (19)

The pure state version of Ŵ (t0) is given by |ψ〉〈ψ|.
The reduction of U to the action of ordinary time-

evolution operators enables a rearrangement of the various
terms in equation (15) with the following result

K(tf , t; E) =

− 2
~

Im tr{U+(tf , t0; E)ÔU(tf , t; E)µ̂U(t, t0; E)Ŵ (t0)}.
(20)

Introducing equation (19) and carrying out the trace gives

K(tf , t; E) = −2
~
∑
α

f(Eα) Im
{
〈Θα(t)| µ̂ |ψα(t)〉

}
,

(21)

where we defined

|ψα(t)〉 = U(t, t0; E)|ψα〉, (22)
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and

|Θα(t)〉 = U(t, tf ; E)Ô|ψα(tf)〉 · (23)

The state |ψα(t)〉 is obtained as the standard propagation
(according to the time-dependent Schrödinger equation)
of one of the states |ψα〉 (but, as indicated, with the in-
clusion of the radiation field). The index α gives a hint on
the particular initial state. In contrast, the state |Θα(t)〉
is the result of a reverse propagation from tf to the earlier
time t starting with Ô |ψα(tf)〉. Therefore, this propaga-
tion requires the complete propagation of |ψα(t)〉 up to
t = tf .

In similarity to the general scheme given in Ap-
pendix C we introduce the iteration procedure to deter-
mine the optimal pulse. We start with a zero-order solu-
tion for |ψα(t)〉 in solving the time-dependent Schrödinger
equation corresponding to equation (22) with an arbi-
trary chosen field pulse E(t). With this zero-order solution
one can determine the nth order (n > 0) solution where
the nth iteration step is given by (mixed state version of
Eqs. (46, 47))

i~
∂

∂t
|ψ(n)
α (t)〉 = Hmol|ψ(n)

α (t)〉+
2

~λ(t)

∑
β

f(Eβ)

× Im
{
〈Θ(n)

β (t)| µ̂ |ψ(n)
β (t)〉

}
µ̂ |ψ(n)

α (t)〉 , (24)

and

i~
∂

∂t
|Θ(n)
α (t)〉 = Hmol|Θ(n)

α (t)〉+
2

~λ(t)

∑
β

f(Eβ)

× Im
{
〈Θ(n)

β (t)| µ̂ |ψ(n−1)
β (t)〉

}
µ̂ |Θ(n)

α (t)〉 , (25)

with

|Θ(n)
α (tf)〉 = Ô|ψ(n−1)

α (tf)〉 · (26)

Since for n = 1 the zero-order solution |ψ(0)
α (t)〉 already

exist the initial value, equation (26) for the first iteration
of |Θα(t)〉 is well defined, and equation (24) (for n = 1)
can be solved, too. Proceeding in this manner fast con-
vergency can be achieved [9]. For every iteration step two
approximations for the optimal field can be given, either

E(n)(t) = − 2
~λ(t)

∑
α

f(Eα) Im〈Θ(n)
α (t)| µ̂ |ψ(n−1)

α (t)〉 ,

(27)

and a somewhat improved expression with |ψ(n)
α (t)〉 in-

stead of |ψ(n−1)
α (t)〉.

The quoted iteration scheme will be applied in the fol-
lowing section to the simple but nontrivial type of ET re-
action which Hamiltonian has been described in Section 2.

4 Numerical results

For the subsequent discussion, which should serve as sim-
ple reference case for more involved further computation,

some additional approximations will be taken. First, as
already indicated, we neglect any coupling of the reac-
tion coordinates (active coordinates) to a thermal reser-
voir of passive molecular DOF. And second, the set of ac-
tive coordinates is reduced to a single one. Furthermore,
we will concentrate on the zero-temperature case. There-
fore, the set of eigenstates |ψα〉 appearing in the scheme of
the preceding section has to be replaced by the electron-
vibrational ground state |χg0〉|ϕg〉 of the ET system. It en-
ters equation (22) where it acts as a single initial state for
the single wavefunction |ψ(t)〉 to be determined. To solve
equation (23) where a backward time propagation has to
be carried out, first we have to fix the observable repre-
sented by the operator Ô. Since dynamical electron local-
ization at a single electron-vibrational state (or a superpo-
sition of such states) will be of main interest we identify Ô
with a projector on a certain state |ψtarget〉 (target state).

To carry out the iteration of the equations (24, 25)
we change to a representation using the diabatic electron-
vibrational states |χmM 〉|ϕm〉 and use the type of penalty
function λ(t), equation (13) suggested in [24]. As the zero-
order approximation for the field we took a Gaussian
shaped pulse of 20 fs duration, with maximum at 50 fs,
and with carrier frequency in the Frank-Condon region of
the donor excitation.

To have a reference case at hand where the ET dynam-
ics are not affected by the laser pulse we imagine an impul-
sive (instantaneous) and complete excitation of the donor
level after the action of an infinitely short pulse (where,
obviously, the structure of the pulse cannot play any role).
This results in a propagation of the Schrödinger equa-
tion for the ET system in the absence of an external field
but with a initial condition determined by the field. The
latter is given by |ψ(0)〉 = |χg0〉|ϕD〉 and corresponds in
the scheme of PES, Figure 1 to a vertical displacement of
the electronic ground-state vibrational wavefunction |χg0〉
into the (excited) donor state |ϕD〉.

To visualize the dynamics we draw in the following the
complete diabatic electronic level populations

Pm(t) =
∑
M

PmM (t) , (28)

where PmM is the electron-vibrational state population.
The respective Pm(t) (m = D, B, A) valid for the case
of impulsive action of the external field are displayed in
Figure 2 for the first picosecond (system parameters from
Tab. 1). The transferred electron starting with 100% pop-
ulation of the donor state reaches a maximum popula-
tion of about 70% at the acceptor after t ≈ 120 fs. Since
any dissipation is absent the populations show a coher-
ent oscillatory behavior. Changing to the corresponding
wavepacket motion (in the coordinate representation, not
shown here) one notices a fast spread out of the initial
wavepacket over a broad range on the Q-axis.

It is just the question we try to answer whether or not
it is possible to control (guide) the ET dynamics in such
a manner to reach a chosen state at a chosen time. A first
example for the application of OC approach is shown in
Figure 3. Here, the second excited vibrational state of the
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Fig. 2. Reference ET dynamics in the DBA-system
(parameters see Tab. 1) after an impulsive excita-
tion at t = 0. The excitation process results in a
complete probability transfer into the donor level.
The total populations Pm, equation (28) of the
donor level (solid line), the bridge level (dotted line)
and the acceptor level (dashed line) are shown.
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Fig. 3. Laser-pulse control of photoin-
duced ET in the DBA-system. Optical
excitation proceeds in the Frank-Condon
transition region of the donor level. The
second excited vibrational state of the ac-
ceptor level |χA2〉|ϕA〉 has been chosen as
the target state. Upper part: population
Pg of the ground-state of the ET-system
(dashed-dotted line), population PD of the
donor level (dotted line), population PB of
the bridge level (dashed line), and popula-
tion PA of the acceptor level (solid line).
Lower part: shape of the optimal laser pulse,
field in units of 107 V/cm.

acceptor electronic state |χA2〉|ϕA〉 has been chosen as the
target state which should be reached at time tf = 500 fs.
One notices that the population dynamics under the ac-
tion of the control pulse turns out to be rather regular
and finally the system reaches the desired state with a
probability of about 95%. To obtain this result less than
20 iterations of the equations (24, 25) have been necessary
(for more details see the discussion related to Fig. 9). In
Figure 3 we also presented the optimal pulse. It increases
up to a time (about 130 fs) at which the ground-state
population is nearly completely removed. Afterwards the
pulse kicks the ET dynamics (with decreasing amplitude)
in such a manner to achieve the required population of
the acceptor level. If one takes a look on the related mov-

ing wavepacket the regular behavior of the external-field
guided ET can be observed, too. The quantity drawn in
Figure 4 is the time-dependent probability distribution
P (Q, t) of the reaction coordinate. It is obtained via the
expectation value of the projector on the coordinate op-
erator eigenstates

P (Q, t) = 〈ψ(t)|Q〉〈Q|ψ(t)〉. (29)

Introducing an expansion of |ψ(t)〉 with respect to the
diabatic electron-vibrational states one obtains

P (Q, t) =
∑

m,M,N

c∗mM (t)cmN (t)χ∗mM (Q)χmN (Q)
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Fig. 4. Wavepacket motion (probability distribution
P (Q, t) of the vibrational coordinate, Eq. (29)) related
to the controlled ET dynamics shown in Figure 3. (Note
that time increases from the backward part of the figure
to the foreground.) The shape of the probability distri-
bution corresponds mainly to a wavepacket with two
nodes indicating that the correct target state |χA2〉|ϕA〉
has been reached.
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Fig. 5. Laser-pulse control of photoinduced
ET in the DBA-system. Optical excitation
proceeds in the Frank-Condon transition re-
gion of the donor level. The target state is
given by the vibrational ground-state of the
acceptor level but displaced from Q(A) = 4
to the new position 6.4. Upper part: popula-
tion Pg of the ground-state of the ET-system
(dashed-dotted line), population PD of the
donor level (dotted line), population PB of
the bridge level (dashed line), and popula-
tion of the target state (solid line). Lower
part: shape of the optimal laser pulse, field
in units of 107 V/cm.

where the c∗mM(t) and cmN (t) denote the related time-
dependent expansion coefficients. Thus, the expansion is
diagonal with respect to the diabatic electronic states but
off-diagonal with respect to the vibrational wavefunctions.
The oscillatory behavior which is shown by P (Q, t) nicely
corresponds to the oscillations of the level populations in
Figure 3.

Besides the population of a single electron-vibrational
state we can, of course, design pulses which lead to the
formation of a wavepacket of Gaussian (or any other)
form. To that end, we introduce the target state as the
displaced vibrational ground state of the acceptor level.
Using the coordinate representation with respect to the
vibrational coordinate it reads 〈Q − Qdis|χA0〉|ϕA〉. The

quantity Qdis (= 2.4, compare Fig. 5) denotes the actual
displacement with respect to acceptor equilibrium position
Q(A). As shown in Figure 5 the optimization procedure
results in a 91% population of the target state. Although
the pulse extends over more than 300 fs the main portion
of the excitation is achieved in the time period just after
t = 100 fs (compare the population Pg of the electronic
ground state). Between t ≈ 150 fs and t ≈ 350 fs there is
no further probability transfer from the ground-state. The
corresponding wavepacket motion (Fig. 6) shows again an
oscillatory behavior corresponding to the electronic popu-
lation dynamics and finally the formation of the required
wavepacket.
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Fig. 6. Wavepacket motion (probability distribution
P (Q, t) of the vibrational coordinate) related to the
controlled ET dynamics shown in Figure 5. (Note that
time increases from the backward part of the figure to
the foreground.) The Gaussian shape of the probabil-
ity distribution corresponding to the displaced accep-
tor vibrational ground-state can be clearly identified
at t = 500 fs.
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Fig. 7. Laser-pulse control of photoinduced
ET in the DBA-system. Optical excitation
proceeds in the Frank-Condon transition re-
gion of the donor level. The target state is
given by the vibrational ground-state of the
bridge level |χB0〉|ϕB〉. Upper part: popula-
tion Pg of the ground-state of the ET-system
(dashed-dotted line), population PD of the
donor level (dotted line), population PB of
the bridge level (dashed line), and popula-
tion PA of the acceptor level (solid line).
Lower part: shape of the optimal laser pulse,
field in units of 107 V/cm.

Next we chose the population of the vibrational
ground-state of the bride state |χB0〉|ϕB〉 as the target
state. The results of the OC approach are displayed in
Figure 7. In the DAB configuration introduced for the ET
transfer system the bridge PES lies symmetrically between
donor and acceptor PES. Therefore, the field tries to syn-
chronize the population of the donor and acceptor level. If
the respective oscillations of PD and PA reaches their min-
imum the bridge population achieves its maximum with
a higher and higher population up to the nearly 100%
population of the target state at tf = 0.5 ps.

The above given results demonstrate the possible laser
pulse control of ET reactions. An effective external field
control of the deexcitation of the ET system is presented
in Figure 8. After an initial impulsive excitation of the
donor state the ET proceeds freely (compare the discus-

sion related to Fig. 2). But at time t = 500 fs a pulse with
a finite duration (see upper part of Fig. 9) is switched on
with the task to drive the system back into the electronic
ground state. This has been achieved for more than 90%
of the population at t = 1 ps. Since the control problem
presented in Figures 8 and 9 seems a little bit more in-
volved than the foregoing examples we also present the
convergency of the iteration procedure to find the opti-
mal pulse. For this aim it is advisable to calculate the
overlap 〈ψtarget|ψ(n)(tf)〉 between the target state and the
solution of the nth iteration of the OC problem at final
time tf . The square of this overlap versus the number of
actual iterations is shown in the lower part of Figure 9.
The fast convergency of the iteration as reported in liter-
ature (see, for example [7–9,24]) can be confirmed for the
present example, too.
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Fig. 8. Laser-pulse induced deexcitation of the
DBA-system after photoinduced ET. To excite
the system an impulsive mechanism with complete
population transfer into the donor level has been
assumed (compare Fig. 2). The control pulse is
switched on at t = 500 fs with the task to transfer
all the electronic population back to the vibrational
ground-state of the electronic ET system ground-
state |χg0〉|ϕg〉 at time t = 1000 fs. Shown are
the population Pg of the ground-state of the ET-
system, the population PD of the donor level (solid
line), the population PB of the bridge level (dotted
line), and the population PA of the acceptor level
(dashed line). The optimal pulse found after 20 it-
eration steps of the OC equations has been able to
remove about 90% of the population back into the
ground-state level.
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Fig. 9. Laser-pulse induced deexcitation
of the DBA-system after photoinduced ET.
Upper part: shape of the laser pulse corre-
sponding to the controlled ET displayed in
Figure 8 (note the shift of time axis). Field
in units of 108 V/cm. Lower part: square of
the wavefunction overlap between the nth
iteration of the OC equations at t = 1000 fs
and the target state |χg0〉|ϕg〉 versus itera-
tion steps n.

5 Conclusions

Starting from the OC problem formulated for an open
quantum system where the coupling to the environment
could be specified according to a microscopic interaction
Hamiltonian, laser pulse control of ultrafast photoinduced
ET reactions has been studied. In the presented first com-
putations we concentrated on the reference case of closed
system dynamics at zero temperature. The possible guided
motion of an electron through a donor-bridge-acceptor
system and the charge localization at a certain part of
the ET system could be demonstrated.

An extension to ET systems with a larger bridging part
(molecular wire) should be possible. And in line with the
computations in [9] is seems plausible that similar results
can be derived if the dissipation of vibrational excitation
energy into passive modes is incorporated. A particular
application of the OC scheme to ultrafast ET proceeding
from a dye molecule attached to a semiconductor surface
[25] is also under work.
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reading of the manuscript by E.G. Petrov is also acknowledged.
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Appendix A: Derivation of the control kernel

The control kernel equation (15) follows as the functional
derivative of the expectation value introduced in equa-
tion (12). The latter expression shows that one has to
determine the respective derivate of the reduced density
operator. To perform the derivative we first note the more
explicit structure of the time-evolution superoperator in-
troduced in equation (10). It reads (T guarantees proper
time-ordering)

U(t, t0; E) = T exp
{
− i

t∫
t0

dτ
(
Lmol + LF(τ) − iD

)}
.

(30)

Accordingly the functional derivate of ρ̂(tf) follows as

δρ̂(tf)
δE(t)

= −i

tf∫
t0

dτ U(tf , τ ; E)
δLF(τ)
δE(t)

U(τ, t0; E) . (31)

Noting

δLF(τ)
δE(t)

= −1
~
δ(τ − t)M (32)

expression (31) is easily converted into the final result,
equation (15) for the control kernel.

Appendix B: The reverse time evolution
superoperator

To have a more specific version of the time evolution su-
peroperator, equation (10) at hand we specify the dissipa-
tive superoperator D introduced in equation (11). Accord-
ing to the standard QME (see for example [18,30]) we set

−Dρ̂ = −
∑
u

(
KuΛuρ̂+ ρ̂Λ+

uKu − Λuρ̂Ku −Kuρ̂Λ
+
u

)
.

(33)

These dissipative terms correspond to a second-order per-
turbational treatment of the type of system reservoir cou-
pling introduced in equation (8). Although not necessary
in general we will additionally assume that the single op-
erators Ku are hermitian. The operators Λu are obtained
from the time dependent operators Ku(t) (defined in the
Heisenberg picture with respect to Hmol and thus incor-
porating any order in the transfer integrals Vmn) and the
reservoir correlation functions Cuv(t) as [18,30]

Λu =
∑
v

∞∫
0

dτ Cuv(τ)Kv(−τ). (34)

To justify the representation equation (20) for the control
kernel and to give a definition of the reverse time evolution

superoperator we first note the general form of any super-
operator i.e. of the time evolution superoperator, too. It
is given by [30]

U(t, t0)ρ̂(t0) = Â(t, t0)ρ̂(t0) + ρ̂(t0)B̂(t, t0)

+
∑
j

Ĉj(t, t0)ρ̂(t0)D̂j(t, t0). (35)

Here, the Â(t, t0), B̂(t, t0), Ĉj(t, t0), and D̂j(t, t0) are or-
dinary operators acting from the left or from the right on
the initial value ρ̂(t0) of the reduced density operator. The
set of operators can be somewhat restricted if we note that
ρ̂(t) is a Hermitian operator

ρ̂(t) = U(t, t0)ρ̂(t0) = ρ̂+(t) =
(
U(t, t0)ρ̂(t0)

)+

. (36)

If all contributions to U are considered to be linearly in-
dependent one obtains B̂ = Â+ and D̂j = Ĉ+

j . This gives

U(t, t0)ρ̂(t0) = Â(t, t0)ρ̂(t0) + ρ̂(t0)Â+(t, t0)

+
∑
j

Ĉj(t, t0)ρ̂(t0)Ĉ+
j (t, t0). (37)

We use this relation to change from equation (15) to equa-
tion (16). In a first step we rewrite equation (15) in re-
placing U which carries out the time evolution from t to
tf according to equation (37)

K(tf , t; E) =
i
~

trS

{
Ô
(
Â(tf , t)[Mρ̂(t)] + [Mρ̂(t)]Â+(tf , t)

+
∑
j

Ĉj(tf , t)[Mρ̂(t)]Ĉ+
j (tf , t)

)}
. (38)

A rearrangement of the different terms in the trace leads to

K(tf , t; E) =
i
~

trS

{(
Â+(tf , t)Ô + ÔÂ(tf , t)

+
∑
j

Ĉ+
j (tf , t)ÔĈj(tf , t)

)
Mρ̂(t)

}
· (39)

The derived expression confirms the existence of Ũ , equa-
tion (17) and demonstrates how to obtain this quantity if
U is given in the form of equation (37).

To derive an equation of motion for σ̂, equation (17)
with respect to a dependence on the intermediate time t
we first take notice of equation (30) and get

∂

∂t
U(tf , t) = U(tf , t)

(
iLmol + iLF(t) +D

)
. (40)

Generalizing the control kernel written in the form of
equation (16) to a quantity which depends via ρ̂ on a sec-
ond independent time-argument t̄ the time derivative with
respect to t yields

∂

∂t
K(tf , t, t̄; E) =

i
~

trS{σ̂(t)
(
iLmol + iLF(t) +D

)
Mρ̂(t̄)} · (41)
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A rearrangement of the terms in the bracket leads to the
required equation of motion for σ̂

∂

∂t
σ̂(t) = −iLmolσ̂(t)− iLF(t)σ̂(t) + D̃σ̂(t) , (42)

with the dissipative part

D̃σ̂(t) =∑
u

(
Λ+
uKuσ̂(t) + σ̂(t)KuΛu − Λ+

u σ̂(t)Ku −Kuσ̂(t)Λu
)

(43)

which is essentially different from D, equation (33). Equa-
tion (42) tells us how to perform the reverse time propa-
gation in equation (17).

Appendix C: Iteration scheme

As already stated in Section 3 the OC problem can be
formulated via the type of control kernel given in equa-
tion (20). Here, the two time-dependent density opera-
tors σ̂ and ρ̂ are determined by separate equations. If the
control field E appearing in the term of the respective
equations of motion proportional to LF is replaced via
equation (14) by the control kernel one obtains

∂

∂t
ρ̂(t) = −iLmolρ̂(t)−Dρ̂(t)

− 1
~2λ(t)

trS{σ̂(t)Mρ̂(t)} Mρ̂(t) , (44)

and

∂

∂t
σ̂(t) = −iLmolσ̂(t) + D̃σ̂(t)

− 1
~2λ(t)

trS{σ̂(t)Mρ̂(t)} Mσ̂(t). (45)

Here, the indirect coupling via the field E is replaced by a
direct coupling via the terms being nonlinear in both den-
sity operators. These nonlinearities ensure a feedback of
the dynamics of ρ̂ as well as σ̂ via the field-term on itself.
Since the equation for σ̂(t) has to be propagated in reverse
time order, i.e. from tf to earlier times t a simultaneous
solution of the equations (44, 45) is not possible. But ac-
cording to [7–9] an efficient iteration can be constructed.
It is based on the idea to determine, e.g. σ̂(t) appearing
in equation (44) for ρ̂(t) separately. Then, equation (44)
for ρ̂(t) is closed and an approximate version for ρ̂(t) can
be computed. Inserting this ρ̂(t) together with the used
form for σ̂(t) into equation (14) an approximate form of
the optimal field has been obtained, too. (Note that the
role of σ̂(t) and ρ̂(t) can be interchanged in the present
scheme.)

The given procedure is based on the following nth or-
der iteration step for ρ̂ (n > 0)

∂

∂t
ρ̂(n)(t) = −iLmolρ̂

(n)(t)−Dρ̂(n)(t)

− 1
~2λ(t)

trS{σ̂(n−1)(t)Mρ̂(n)(t)} Mρ̂(n)(t), (46)

where σ̂(n−1)(t) is the result of the foregoing iteration step.
In a similar manner we obtain for σ̂(n)(t)

∂

∂t
σ̂(n)(t) = −iLmolσ̂

(n)(t) + D̃σ̂(n)(t)

− 1
~2λ(t)

trS{σ̂(n)(t)Mρ̂(n)(t)} Mσ̂(n)(t). (47)

The zero-order approximation for ρ̂ follows by replacing
the optimal field term by a concrete field expression

∂

∂t
ρ̂(0)(t) = −iLmolρ̂

(0)(t)−Dρ̂(0)(t) +
i
~

E(t)Mρ̂(0)(t).

(48)

Every iteration step produces two approximation of the
optimal field. The first reads

E(n)(t) =
i

~λ(t)
trS{σ̂(n−1)(t)Mρ̂(n)(t)}. (49)

If σ̂(n−1)(t) is replaced by the nth iteration σ̂(n)(t) the
second approximation for the field is obtained. The fast
convergence of this iteration could be demonstrated in [9].
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